The Maclaurin Expansions

نویسندگان

  • Akira Nishino
  • Yasunari Shidama
چکیده

The papers [15], [16], [4], [12], [2], [14], [5], [1], [3], [7], [6], [10], [11], [8], [9], [17], and [13] provide the notation and terminology for this paper. The following proposition is true (1) For every real number x and for every natural number n holds |x| = |x|. Let f be a partial function from R to R, let Z be a subset of R, and let a be a real number. The functor Maclaurin(f, Z, a) yields a sequence of real numbers and is defined by: (Def. 1) Maclaurin(f, Z, a) = Taylor(f, Z, 0, a). The following propositions are true: (2) Let n be a natural number, f be a partial function from R to R, and r be a real number. Suppose 0 < r and f is differentiable n + 1 times on ]−r, r[. Let x be a real number. Suppose x ∈ ]−r, r[. Then there exists a real number s such that 0 < s and s < 1 and f(x) = ( ∑κ α=0(Maclaurin(f, ]−r, r[, x))(α))κ∈N(n) + f (]−r,r[)(n+1)(s·x)·x (n+1)! . (3) Let n be a natural number, f be a partial function from R to R, and x0, r be real numbers. Suppose 0 < r and f is differentiable n + 1 times on ]x0 − r, x0 + r[. Let x be a real number. Suppose x ∈ ]x0 − r, x0 + r[. Then there exists a real number s such that 0 < s and s < 1 and |f(x) − ( ∑κ α=0(Taylor(f, ]x0 − r, x0 + r[, x0, x))(α))κ∈N(n)| = | (]x0−r,x0+r[)(n+1)(x0+s·(x−x0))·(x−x0) (n+1)! |.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler-Maclaurin expansions for integrals with endpoint singularities: a new perspective

In this note, we provide a new perspective on Euler–Maclaurin expansions of (offset) trapezoidal rule approximations of the finite-range integrals I [f ] = ∫ b a f (x) dx, where f ∈ C∞(a, b) but can have general algebraic-logarithmic singularities at one or both endpoints. These integrals may exist either as ordinary integrals or as Hadamard finite part integrals. We assume that f (x) has asymp...

متن کامل

Euler-Maclaurin Expansions for Integrals over Triangles and Squares of Functions Having Algebraic/Logarithmic Singularities along an Edge

We derwe and analyze the properties of Euler-Maclaurin expansions for the differences / ~ / s'(log.~) " /(.~. Qilfj is a combination of one-dimensional generalized trapezoidal rule approximations. 1. ~NlKOL)UC110N In this work we are intcrcstcd in deriving Euler-Maclaurin expansions for the singular double integrals where W(X) = x'(Iog x)'. s >-l.s'=O. 1. (1.3) and f(.~,~l) is as many times dif...

متن کامل

Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities

In this paper, we provide the Euler–Maclaurin expansions for (offset) trapezoidal rule approximations of the divergent finite-range integrals ∫ b a f(x) dx, where f ∈ C ∞(a, b) but can have arbitrary algebraic singularities at one or both endpoints. We assume that f(x) has asymptotic expansions of the general forms f(x) ∼ K (x− a)−1 + ∞ ∑ s=0 cs(x− a)s as x → a+, f(x) ∼ L (b− x)−1 + ∞ ∑ s=0 ds(...

متن کامل

Euler–Maclaurin Expansions for Integrals with Arbitrary Algebraic-Logarithmic Endpoint Singularities

In this paper, we provide the Euler–Maclaurin expansions for (offset) trapezoidal rule approximations of the finite-range integrals I [f ] = ∫ b a f (x) dx, where f ∈ C∞(a, b) but can have general algebraic-logarithmic singularities at one or both endpoints. These integrals may exist either as ordinary integrals or as Hadamard finite part integrals. We assume that f (x) has asymptotic expansion...

متن کامل

Recent Developments in Asymptotic Expansions From Numerical Analysis and Approximation Theory

In this chapter, we discuss some recently obtained asymptotic expansions related to problems in numerical analysis and approximation theory. • We present a generalization of the Euler–Maclaurin (E–M) expansion for the trapezoidal rule approximation of finite-range integrals R b a f ðxÞdx, when f(x) is allowed to have arbitrary algebraic–logarithmic endpoint singularities. We also discuss effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007